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Abstract

Extraction of 2-port scattering matrix of a probe-excited
semi-infinite waveguide based on moment method solutions
of three short circuited guides is presented. Results show
that this solution: (i) provides an easy way to determine the
9-port scattering matrix of probe-excited waveguide prob-
lems; and (ii) enable the accurate determination of the load-
ing effects of the probe on the resonant frequencies of un-
perturbed cavities. Both of these are keys in the design
of input/output cavities of waveguide filters. Agreement
with experimental data is excellent for loose-coupled probe-
excited semi-infinite waveguide problems.

1. Introduction

The input and output ports of microwave cavity filters
are usually realized by coaxial probe-excited cavities[1],[2]
in order to avoid using extra coaxial waveguide transitions.
There are no accurate theoretical models in the literature
for predicting the 2-port scattering matrix of coaxial probe
excited cavities or the loading effects of the probe on the res-
onant frequencies. The traditional method of probe-excited
input /output cavities design is experimental and requires
additional tunning screws to fine-tune the resonance fre-
quency [1]. The probe-excited waveguide problem has been
treated for three decades [3},[4],[5], but the efforts were only
focused on solving for the input impedance problem as a
function of waveguide and probe dimensions to design good
adaptor by optimizing the dimensions. For microwave cav-
ity filler design, the available procedures are not adequate
for exact design.

In this paper, the 2-port scattering matrix of probe-
excited semi-infinite waveguide is extracted from the in-
put impedances moment method’s solutions of three probe-

excited cavities. Result of the numerical calculations show
excellent agreement with experimental data. Several as-

pects of numerical computation are also presented.
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II. Experimental and Theoretical Determination of
2-port Scattering Matrix

Consider the problem of determining (by measurement
or by numerical calculations) the two port scattering ma-

trix of the probe-excited waveguide shown in Fig.1(a), with
equivalent circuit shown in Fig.1(b). If port 2 is termi-

nated by three different known lengths (L;,i = 1,2,3) of
short circuit waveguides, and the corresponding input re-
flection coefficients at port 1 p;(¢ = 1,2, 3) are measured (or.
computed), then it can be shown that all the 2-port scat-
tering matrix elements can be calculated, by solving three
equations [6]. The measurement configuration is shown in
Fig.1(c). For accuracy, the phases of the terminating short
circuited waveguide sections should not have 360° differ-
ences at the frequencies of interest. The best condition is

that these phases differ by 120° and 240° only.
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Figure 1. (a) Probe-excited semi-infinite retangular waveguide

(b) Two port equivalent circuit
(c) Three probed-excited cavity
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To compute the reflection coefficients p;, the moment
method is used to compute the input impedances of probe-
excited cavities of Fig.1(c). The formulation is similar to
semi-infinite wavegunide problem [5] and is summarized as
following. Assume the aperture field is a coaxial TEM mode,
then the field at the aperture is a function of coaxial termi-
nal voltage at the junction. According to the equivalence
principle, this aperture field can be replaced by equivalent
magnetic current source backed by perfect electrical con-
ductor. The Green’s function of y-directed electrical cur-
rent on the probe, x- and z-directed magnetic currents on
the aperture should be derived and must be transformed to
fast-convergent series [5],[7]. Total fields in the cavity is the
summation of radiation fields due to electrical currents on
the probe and magnetic currents at the aperture. Forcing
the tangential electrical field on outside of probe to be zero
,the electrical current on probe can be determined. The in-
put impedance is computed by the input terminal voltage
at the coaxial aperture divided by the electrical current on
probe at the coaxial-waveguide junction.

III. Numerical and Experimental Results

Figures 2 and 3 show the computed and experimental
measurements results of the magnitude and phase of input
reflection coefficients of probe:excited semi-infinite waveg-
uide (S11 parameter of the scattering matrix). The mo-
ment method solutions are obtained and shown for following
cases:

1. solutions for 3 shorted lengths of waveguides (cavities)

with 1 filament axially-concentrated probe current, as
shown in Fig.4.(a)

2. solutions for 3 shorted lengths of waveguides (cavi-
ties) with multifilament probe current, as shown in
Fig.4.(b)

3. solution directly for semi-infinite waveguide with 1 fil-
ament axially-concentrated probe current

4. solution directly for semi-infinite waveguide with mul-
tifilament probe current

A single expansion function is used for the probe cur-
rent in the case of cavity, i.e., sink,(y — &), where k, is the
free space wave number. For the moment method in semi-
infinite waveguide cases, two expansion functions are used,
as in [5]. The additional term is sink,(y — h)+a(l — cos(h —
y)), where o is constant to make this function orthogonal
to sink,(y — h).

Figures 5 and 6 show the experimental and 3-cavity mo-

ment method results of the 2-port scattering matrix of typi-
cal loss-coupled probe-excited semi-infinite waveguide prob-
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Fig.2 Numerical and theoretical S;; for a probe
excited semi-infinite waveguide. The dim—
ensions are: a=0.622", b=0.311", Lz=0.219"
JH=0.051", d=0.025", D=0.083".
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Fig.3 Numerical and theoretical S;; for a probe

excited semi—infinite waveguide. The dim-—
ensions are: a=0.622", b=0.311", Lz=0.219"
JH=0.078", d=0.025", D=0.083".
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Figure 4 (a) One-filament axially-concentrated current approximation
(b) Multifilament current approximation
(c) Real current flow on probe

lem (The magnitude of S22 is not shown here because it

equal to magnitude of S11).

From the shown results and many computer simulations
using each of the above described moment method compu-
tations, the following observations are worth noticing:

1. The solution with center-filament current approxima-
tion yields closer result to experiment than multifila-
ment current modeling for the probe current

. The input impedance solution of the semi-infinite waveg-
uide problem by the three-cavity moment method yields
better results than the solution obtained directly for
the semi-infinite waveguide.

. The computed phase of Sy, is much closer to the ex-
perimental data than that of Sy;.

. Further analysis showed that for long probes, the nu-
merical results are less accurate than for longer probes.

The formulation of the cavity problem is very similar
to Pocklington’s equation for dipole antenna. If the wire
is long, i.e., h > 2d, the effect of probe’s end surface is
not significant and can be neglected. The consequencies of
this approximation ( thin-wire approximation } lead to two
results: there is no current flow on the outside end sur-
face of the probe and the boundary condition on that is not
forced. In practice, the electrical currents do exit on the end
surface [8]. The thin-wire approximation for the probe in
the waveguide is less accurate than for dipole antennas, be-
cause the probe’s radius could be comparable to its length.
T'he current’s models of 1-filament axially-concentrated and
multifilament are shown in Fig.4(a),(b). However the ac-
tual current flows on probe is shown as in Fig.4(c). The
boundary conditions on the end surface are not enforced
in Fig.4(a) and (b). Even though the multi-filament cur-
rent is a better model for the electrical current of probe’s
tubular surface section, the current at the edge is forced to
be zero while in reality this is not the case. Thus axially-
concentrated 1-filament current current model yields more
accurate result than multifilament current probe’s model.

0 _‘_I_I_._I__LJ—I—‘J”L T LI LN M | J L _
. /

s11
-4 ——Experimental

~1—filament 3 cavity MM

———multi—filament 3 cavity MM
-8
S12*821

TTTTTTreprorT LRI
I I I

20%l0g(S11) & 10*log(S12*S21)

1 i
_10 -—I—'l_'-l 1 I 1 ] i | I L i 1 1 I 1 1 I 1 7l
14 145 15 155 16
Freq.(GHz)
—L_L_l__L L T T T I T T T T [ T T T T
F S
100 [ S12%s21

S22

o
f
I

1

1

Phases of Si1, S22 & S12*S21
L
o
=1

-
IS

16
Freq.(GHz)

Fig.5 Numerical and theoretical scattering matrix
a probe excited semi—infinite waveguide.
The dimensions are: a=0.622", b=0.311", Lz=
0.219%, H=0.051", d=0.025", D=0.083".
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Fig.6 Numerical and theoretical scattering matrix
a probe excited semi—infinite waveguide.
The dimensions are: a=0.622", b=0.311", Lz=
0.219", H=0.078", d=0.025", D=0.083".
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Thin wire approximation also plays an important role in
choosing expansion function for probe current. Neglecting
the effect of probe’s end surface could cause non-physical
current oscillations near the probe’s ends if probe’s current
is expanded using sub-domain functions [9]. This is due to
the fact that the Green’s function of a unit electrical current
1s a second derivative of a delta-type function. For long wire
case one can increase the segment length of sub-domain ex-
pansion function to mask this oscillation. For short probes
in waveguide problem, the non-physical current oscillation
could dominate the numerical process. Full-domain func-
tions can be chosen to expand the probe’s current to avoid
this problem. The current distributions on probe in the
cavity and in the semi-infinite waveguide are different due
to different boundary conditions. In this paper, the wave-
dependent function sink,(y — k) is used. This function pro-
vides a better approximation for short probe in the cavity
than in the semi-infinite waveguide, because there are radi-
ation losses in the semi-infinite waveguide. Comparing with
experimental data, we find that direct moment method in-
put impedance solution in semi-infinite waveguide is less
accurate than that extracted from 3-cavity solution, even
though two current expansion functions are used to improve
the current approximations for semi-infinite waveguide.

The resonant frequency of a probe-excited cavity res-
onator is lower than that of an unperturbed cavity with
the same dimension [10]. The element of scattering ma-
trix Sy, can be used to determine the real location of the
shorted plane in the = > 0 waveguide side in Fig.1 for a
given resonant frequency. As shown in Fig.1(a), if L. is
known, then S2; are computed by the moment method. By
adding a section of transmission line, the phase of Sy, can
be shifted to 180 in the Smith chart for a given frequency.
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Fig.7 Loading effects of probe on cavity's resonant
frequency(waveguide is the same as in Fig2).
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This length of the transmission line is the required length of
waveguide that make the cavity resonate at that frequency.
Fig.7 shows the measured and computed results of the lo-
cations of the shorted plane at the corresponding resonant
frequencies for different trial functions, i.e., sink,(y — k) and
sin(w/2H )(y — h). The experimental data is found to fall

between the results of these two current approximations.

Conclusions

The procedure of theoretical and experimental charac-
terization of probe-excited semi-infinite waveguide has been
presented. Our results show very good agreement between

theoretical and experimental measurements. Several as-

pects of numerical computations on probe in waveguide and
cavity problem are discussed. This work paves the way to
the precise design of input/output probe-excited rectangu-
lar cavities.
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