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Abstract

Extraction of 2-port scattering matrix of a probe-excited

semi-infinite waveguide based on moment methc)d solutions

of three short circuited guides is presented. Results show

that this solution: (i) provides an easy way to determine the

2-port scattering matrix of probe-excited waveguide prob-

lems; and (ii) enable the accurate determination of the load-

ing effects of the probe on the resonant frequencies of un-

perturbed cavities. Both of these are keys in the design

of input/output cavities of waveguide filters. Agreement

with experiment al data is excellent for loose-coupled probe-

excited semi-infinite waveguide problems.

I. Introduction

The input and output ports of microwave ciivity filters

are usually realized by coaxial probe-excited cavities [l] ,[2]

in order to avoid using extra coaxial waveguide transitions.

There are no accurate theoretical models in the literature

for predicting the 2-port scattering matrix of coaxial probe

excited cavities or the loading effects of the probe on the res-

onant frequencies. The traditional method of probe-excited

input/output cavities design is experimental and requires

additional tunning screws to fine-tune the resonance fre-

quency [1]. The probe-excited waveguide problem has been

treated for three decades [3] ,[4] ,[5], but the efforts were only

focused on solving for the input impedance problem as a

function of waveguide and probe dimensions to design good

adaptor by optimizing the dimensions. For microwave cav-

it.Y filter design, the available procedures are not adequate

for exact design.

In this paper, the 2-port scattering matrix of probe-

excited semi-infinite waveguide is extracted from the in-

put impedances moment method’s solutions of three probe-

excited cavities. Result of the numerical calculations show

excellent agreement with experimental data. Several as-

pects of numerical computation are also presented.

II. Experimental and Theoretical Determination of

2-port Scattering Matrix

Consider the problem of determining (by measurement

or by numerical calculations) the two port scattering ma-

trix of the probe-excited wavegnide shown in Fig. 1(a), with

equivalent circuit shown in Fig. 1( b). lf port 2 is termi-

nated by three different known lengths (L;, i = 1,2,3) of

short circuit waveguides, and the corresponding input re-

flection coefficients at port 1 pi(i = 1,2,3) are measured (or

computed), then it can be shown that all the 2-port scat-

tering matrix elements can be calculated, by solving three

equations [6]. The measurement configuration is shown in

Fig.1 (c). For accuracy, the phases of the terminating short

circuited waveguide sections should not have 360° differ-

ences at the frequencies of interest. The best condition is

that these phases differ by 120° and 240° only.
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Figiue 1. (a) Probe-excited semi-infinite retangtdar waveguide
(b) Two port equivalent circuit
(c) Three probed-excited cavity
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To compute the reflection coefficients pi, the moment

method is used to compute the input impedances of probe-

excited cavities of Fig.l(c). The formulation is similar to

semi-infinite waveguide problem [5] and is summarized as

following. Assume the aperture field is a coaxial TEM mode,

then the field at the aperture is a function of coaxial ternli-

nal voltage at the junction. According to the equivalence

principle, this aperture field can be replaced by equivalent

magnetic current source backed by perfect electrical con-

ductor. The Green’s function of y-directed electrical cur-

rent on the probe, x- and z-directed magnetic currents on

the aperture should be derived and must be transformed to

fast-convergent series [5], [7]. Tot al fields in the cavity is the

summation of radiation fields due to electrical currents on

the probe and magnetic currents at the aperture. Forcing

the tangential electrical field on outsicle of probe to be zero

,the electrical current on probe can be determined. The in-

put impedance is computed by the input terminal voltage

at the coaxial aperture divided by the electrical current on

probe at the coaxial-waveguicle junction.

III. Numerical and Experimental Results

Figures 2 and 3 show the computed and experimental

measurements results of the magnitude and phase of input

reflection coefficients of probe~excited semi-infinite waveg-

uide (S11 parameter of the scattering matrix). The mo-

ment method solutions are obtained and shown for following

cases:

1. solutions for 3 shorted lengths of waveguides (cavities )

2.

3.

4.

with 1 filament axiall y-concent rat ed probe current, as

shown in Fig.4. (a)

solutions for 3 shorted leugt hs of waveguides (cavi-

ties) with multifilament probe current, as shown in

Fig.4.(b)

soiution directly for semi-infinite waveguide with 1 lil-

ament axially-concentrated probe current

solution directly for semi-infinite waveguide with mul-

tifilament probe current

A single expansion function is used for the probe cur-

rent in the case of cavity, i.e., sink~(y – k), where k. is the

free space wave number. For the moment method in semi-

infinite waveguide cases, two expansion functions are used,

as in [5]. The additional term is sink~(y – h)+~(l – c~~(h –

y)), where cr is constant to make this function orthogonal

to sinkO(y – h).

Figures 5 and 6 show the experimental and 3-cavity mo-

ment method results of the 2-port scattering matrix of typi-

cal loss-coupled probe-excited semi-infinite waveguide prob-
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Fig.2 Numerical and theoretical S1l for a probe
excited semi–infinite waveguide. The dim–
ensions are: a= O.622, b=O.31 l“, Lz=O.219°
,H=O.051”, d= O.025”, D= O.063”.
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Fig.3 Numerical and theoretical Sll for a probe
excited semi–infinite waveguide. The dim–
ensions are a= O.622”. b=O.31 1“, Lz=O.219°
,H=O.078”, d=O.025”, D= O.063”,
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Figure4 (a) (he-fdanmnt axial]y-concentrated currant approximation
(b) Multifiknrent current approximation
(c) Rasf currant flOW cm probe

lem (The magnitude of S22 is not shown here because it

equal to magnitude of S11).

From the shown results and many computer simulations

using each of the above described moment method compu-

tations, the following observations are worth noticing:

1.

2.

3.

4.

r

The solution with center-filament current approxima-

tion yields closer result to experiment than multifila-

ment current modeling for the probe current

The input impedance solution oft he semi-infinite waveg-

uide problem by the three-cavity moment method yields

better results than the solution obtained directly for

the semi-infinite waveguide.

The computed phase of S22 is much closer to the ex-

perimental data than that of S11.

Further analysis showed that for long probes, the nu-

merical results are less accurate than for longer probes.

I’he formulation of the cavity problem is very similar

to Pocklington’s equation for dipole antenna. If the wire

is long, i.e., h >> 2d, the effect of probe’s end surface is

not significant and can be neglected. The consequences of

this approximation ( thin-wire approximation ) lead to two

results: there is no current flow on the outside end sur-

face of the probe and the boundary condition on that is not

forced. In practice, the electrical currents do exit on the end

surface [8]. The thin-wire approximation for the probe in

the waveguide is less accurate than for dipole antennas, be-

cause the probe’s radius COUIC1be comparable to its length.

‘~he current’s models of l-filament axially-concent rated and

multifilament are shown in Fig.4 (a), (b). However the ac-

tual current flows on probe is shown as in Fig.4(c). The

boundary conditions on the end surface are not enforced

in Fig.4(a) and (b). Even though the multi-filament cnr-

rent is a better model for the electrical current of probe’s

tubular surface section, the current at the edge is forced to

be zero while in reality this is not the case. Thus axially-

concentrated l-filament current current model yields more

accurate result than multifilament current probe’s model.
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Fig.5 Numerical and theoretical scattering matrix
a probe excited semi-infinite waveguide.
The dimensions are: a=O.622”, b=O.31 l“, Lz=
0.219”, H=0,051”, d= O.025”, D=O.063”.
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Fig.6 Numerical and theoretical scattering matrix
a probe excited semi–infinite waveguide.
The dimensions are: a= O.622”, b=O.3 11“, Lz=
0.219”, H= O.076”, d= O.025”, D= O.06S”.
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Thin wire approximation also plays an important role in

choosing expansion function for probe current. Neglect ing

the effect of probe’s end surface could cause non-physical

current oscillations near the probe’s ends if probe’s current

is expancled using sub-domain functions [9]. This is due to

the fact that the Green’s function of a unit electrical current

is a second derivative of a delta-type function. For long wire

case one can increase the segment length of sub-domain ex-

pansion function to mask this oscillation. For short probes

in wavegui cle problem, the non-physical current oscillation

COUIC1dominate the numerical process. Full-domain func-

tions can be chosen to expand the probe’s current to avoid

this problem. The current distributions on probe in the

cavity and in the semi-infinite waveguide are different clue

to different boundary conditions. In this paper, the wave-

dependent function sink. (y – h ) is used. This function pro-

vides a better approximation for short probe in the cavity

than in the semi-infinite waveguide, because there are radia-

tion losses in the selni-infinite waveguide. Comparing with

experiment a1 clat a, we find that direct moment method in-

put impedance solution in selni-infiuite waveguide is less

accurate than that extracted from 3-cavity solution, even

though two current expansion functions are used to improve

the current approximations for senli-infinite waveguide.

The resonant frecplency of a probe-excited cavity res-

onator is lower than that of an unperturbed cavity with

the same climension [IO], The element of scattering ma-

trix ,Szz can be used to determine the real location of the

shortecl plane in the ~ ~ O wa,veguide side in Fig.1 for a

given resonant frequency. As shown in Fig.l(a), if L. is

known, then ,Szz are computed by the moment method. By

adding a section of transmission line, the phase of SZz can

be shiftecl to 1S0” in the Smith chart for a given frequency.
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Fig.7 Loading effects of probe on cavity’s resonant

frequency(waveguide is the same as in F1g 2),

This length of the transmission line is the required length of

wavegui de that make the cavity resonate at that frequency.

Fig.7 SI1OWSthe measured and computed results of the lo-

cations of the shorted plane at the corresponding resonant

frequencies for different trial functions, i.e., sinkO(y – h) and

sin(rr/211) (y – h). The experimental data is found to fall

between the results of these two current approximations.

Conclusions

The procedure of theoretical and experimental charac-

terization of probe-excited selni-infinite waveguide has been

preseutecl. Our results show very good agreement between

theoretical and experiment al measurements. Several as-

pects of numerical computations on probe in waveguide and

cavity problem are discussed. This work paves the way to

the precise clesign of input/output probe-excited rectangu-

lar ca~ities.
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